

PHAT-GPM TECHNICAL DESCRIPTION

pHAT Module Series

Document: pHAT-GPM Technical Description

Issue: 2

Date: 13th May 2022

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Designer Systems Ltd.

11 Castle Street, Truro, Cornwall TR1 3AF, United Kingdom.

Tel: +44 (0) 1872 262000

Email: sales@designersystems.co.uk

For more information, please visit:

http://www.designersystems.co.uk

For technical support, or to report documentation errors, please visit:

http://www.designersystems.co.uk/robotics Or email to: support@designersystems.co.uk/robotics

GENERAL NOTES

DESIGNER SYSTEMS OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. DESIGNER SYSTEMS MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. DESIGNER SYSTEMS DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF DESIGNER SYSTEMS LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Designer Systems Ltd. 2019. All rights reserved.

About the Document

History

Revision	Description	Date	Author
Draft A	Create	3/2/19	DIO
Issue 1	First release	2/5/19	-
Issue 2	Added battery installation description	13/5/22	-

Contents

P	age No.
1 Introduction	6
2 Product Concept	7
2.1 General Description	7
2.2 Key Features	8
3 Application	9
3.1 GPS Basics	9
3.2 Installation	9
3.3 Operation	10
3.4 Indication	10
3.5 Pin Assignment	11
3.6 Power Supply	
3.6.1 Power Supply Pins	11
3.7 I ² C Interface	12
3.7.1 I ² C Interface Pins	12
3.7.2 I ² C Communication	12
3.7.3 I ² C Registers	13
3.7.4 I ² C Register Restoration	16
3.7.5 UTC Time/Date Format	16
3.7.6 I ² C Read Example	17
3.8 Backup Battery	17
3.8.1 Battery Replacement	
3.9 Application Software	17
3.9.1 Demonstration Software	17
4 Electrical Characteristics	
4.1 Absolute Maximum Ratings	18
4.2 Operating Conditions	
4.3 Current Consumption	19
5 Mechanical	20
5.1 Dimensions	20
6 References	
6.1 I ² C protocols	
7 Appendix	
8 Compliance	23
T.11.	
Tables	
Table 1: Key Features	Я
Table 2: GPS Parameters	
Table 3: Start-up modes	
Table 4: Status Indication	

Table 5: Power Supply Pins	11
Table 6: I ² C Interface Pins	12
Table 7: I ² C Address Settings	12
Table 8: I ² C Registers	13
Table 9: Absolute Maximum Ratings	18
Table 10: Normal Operating Conditions	18
Table 11: Current Consumption	
Table 12: Related Documents	22
Table 13: Terms and Abbreviations	22
Figures	
Figure 1: Dimensions	20
Figure 2: I ² C Write protocol	21
Figure 3: I ² C Read protocol	21

1 Introduction

This document defines the pHAT-GPM GNSS module and describes the hardware interface that is connected to the customers Raspberry-Pi application.

This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with the quick start guide and demo software, customers can use this document to easily set up the module.

2 Product Concept

2.1 General Description

The Designer Systems pHAT-GPM is a highly integrated 99 Channel simultaneous Global Positioning System (GPS) and GLONASS positioning system allowing your robotic application to determine its location on the earth's surface. Specifically targeted at the Raspberry-Pi user the pHAT-GPM features I²C communication to leave the serial [TX/RX] port free for other functions eg. debugging.

GPS data received by the pHAT-GPM is stored within internal registers which are updated once per second.

Due to compact form factor, ultra-low power consumption and extended temperature range, pHAT-GPM is a best choice for a wide range of positional, speed and altitude applications.

The module fully complies with the RoHS directive of the European Union

2.2 Key Features

The following table describes the key features of the pHAT-GPM.

Table 1: Key Features

Features	Details				
Power Supply	 Supply Voltage: 4.5 ~ 5.5VDC Typical Supply Voltage: 5.0VDC 				
Frequency band	 GPS L1 Band Receiver (1575.42MHz) GLONASS L1 Band Receiver (1601.71MHz) 				
Accuracy	Autonomous < 2.5 m CEP @ -130dBm				
Velocity	Accuracy Without aid <0.1m/s				
Acceleration	Accuracy Without aid 0.1m/s ²				
Reacquisition Time	< 1 second				
Cold Start	35 seconds @ -130dBm typ.				
Warm Start	< 5 seconds @ -130dBm typ.				
Hot Start	< 1second @ -130dBm typ.				
Sensitivity	 Acquisition -149dBm Tracking -167dBm Re-acquisition -161dBm 				
Environmental	 Operating Temperature -40°C to 85°C Storage Temperature -45°C to 125°C 				
Dynamic Performance	 Maximum Altitude Max.18000m Maximum Velocity Max.515m/s Maximum Acceleration 4G 				
Accelerometer range	0 to 2G				
Accelerometer inclination	-50 to +50 degrees (pitch and roll)				
I ² C Speed	400kHz max.				
Dimensions	65 x 30 x 8.5mm				
Weight	14g approx.				

3 Application

3.1 GPS Basics

The heart of the pHAT-GPM is a Global Positioning System receiver module and antenna that receive signals from satellites orbiting the earth.

There are 32 of these satellites in the American run GPS system, 24 in the Russian GLONASS system, each sending its own unique signal to the earth's surface for pickup by any GPS receiver, which searches the sky for available satellites.

Upon detecting the satellites in view and their current position the receiver uses the satellites with highest signal strength to calculate, using triangulation, the receiver's latitude, longitude & altitude** (position).

Should the receiver also be moving, speed in kilometres per hour, and heading, in degrees true north, can also be determined. The GPS parameters stored are listed below.

For example the offices of Designer Systems in Truro, UK are located 50 degrees, 15.817 minutes North latitude and 5 degrees, 3.549 minutes West longitude.

Table 2: GPS Parameters

Parameter	Description
Time	UTC time in format HH:MM:SS
Date	UTC date in format DD/MM/YY
Latitude	Latitude in format DD M.MMMM either North or South of the equator
Longitude	Longitude in format DDD M.MMMM either West or East of an imaginary line drawn vertically through Greenwich in the UK
Altitude	Altitude in format MMMMM metres above sea level
Speed	Speed in format KKK.K kilometres per hour
Heading	Heading in format DDD.D degrees

3.2 Installation

Remove the coin cell from its blister packaging and slide into the battery holder on the pHAT-GPM board with the positive '+' side uppermost, There is a '+' on the holder to help. To gain the best reception the GPM should be used outside with a good view of the sky. Trees and buildings will cause the GPS signals being received to degrade and positional/speed

^{**} LLA format to WGS-84 ellipsoid.

information may be lost. To greatly improve reception the GPM should be mounted above a metal base.

3.3 Operation

When power is applied to the GPM the unit immediately starts to search for satellites. The GPM can start in one of three (3) modes, as follows:

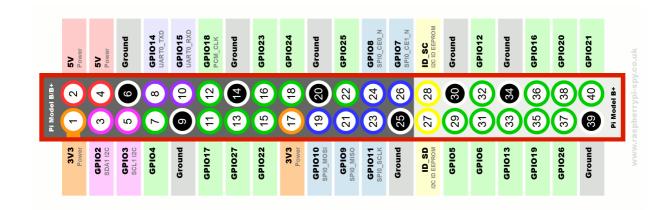
Table 3: Start-up modes

Mode	Description
Cold start	This mode only applies when the GPM has been powered-up for the first time after being removed from its packaging. As the GPM does not know where it is on the earth's surface, it starts to hunt for groups of satellites to determine its location. This process may take up to 30 minutes before positional information is available; it is suggested that a battery be connected and the unit left in the open air until the STATUS indicator starts to flash.
Warm Start	This mode applies to a GPM that has already been 'cold-started' and whose location has not changed significantly when powered up again or has been powered down for at least one (1) hour. Positional information is normally available again within 5 seconds of power re-application.
Hot Start	This mode applies when the GPM has been powered off for less than 60 minutes. Positional information is normally available again within 1-10 seconds of power re-application.

The warm and hot start -up modes are possible due to an internal backup battery which powers the Real Time Clock (RTC) and almanac memory when external power is removed.

3.4 Indication

The STATUS indicator is used to provide visual feedback of the current GPM condition. There are three (3) conditions as follows.


Table 4: Status Indication

Indication	Description		
ON	Power applied and no positional information		
Flashing slowly	Positional information being received		
Flashing fast	GPM in motion (>10km/h)		

These conditions will change as the GPM moves around its location and under objects that may block the satellite signals.

3.5 Pin Assignment

3.6 Power Supply

3.6.1 Power Supply Pins

The GPM provides a supply input and multiple ground connections on the 20+20 header that connect to the 5.0V supply on the Raspberry-Pi board. The table below describes the module supply and ground pins.

Table 5: Power Supply Pins

Pin Name	Pin No	Description	Min	Тур.	Max	Unit
V+	2	Power Supply	4.5	5.0	6.0	V
Ground	6,9,14,20, 25,30,34, 39	Power Ground				

3.7 I²C Interface

3.7.1 I²C Interface Pins

The GPM provides I²C data (SDA) and clock (SCL) connections on the 20+20 header that connect to the SDA and SCL on the Raspberry-Pi board. The table below describes the module I²C pins.

Table 6: I²C Interface Pins

Pin Name	Name Pin No I/O Description		Description	Comment	
SDA	3	DIO	I2C Data	3.3V level	
SCL	5	СО	I2C Clock	3.3V level	

The GPM does NOT have I²C pullups but relies on the pullups present on the Raspberry-Pi board. When not connecting to a Raspberry-Pi board external pullups of 4.7Kohms should be connected on SDA and SCL to a 3.3V supply.

3.7.2 I²C Communication

Up to four GPM modules may be connected to the same Raspberry-Pi board or I²C bus and accessed individually using their own individual address.

The following table shows how the pads are soldered for the different binary addresses.

Table 7: I²C Address Settings

Address (xx)	Α0	A1
00	OPEN	OPEN
01	SHORT	OPEN
10	OPEN	SHORT
11	SHORT	SHORT

The binary address (xx) above is used in conjunction with the device ID 11010xxD ($0xD0_{hex}$) to form the complete device address i.e. if both jumpers are left unconnected (default) then the device address would be 1101000D_{binary}.

The 'D' bit determines if a read or a write to the GPM is to be performed. If the 'D' bit is set '1' then a register read is performed or if clear '0' a register write.

3.7.3 I²C Registers

To read individual data and status registers a device write then read must be undertaken by the Raspberry-Pi.

The write consists of a Start condition, device ID ('D' bit clear), register to start read and a Stop condition.

This is followed by a read, which consists of a Start condition, device ID ('D' bit set), followed by data from the register specified and terminated with a Stop condition. The GPM also auto increments the register specified for every additional read requested by the Master I²C device, which allows more than one register to be read in one transaction. This allows for example Register 0 to Register 5, current UTC time, to be read in one transaction (see Figure 3 for I²C read protocol).

There are 70 individual registers that can be read within the GPM as follows:

Table 8: I²C Registers

Register name	Туре	Register address Hex Binary		Description
Hours tens	r	00	00000000	UTC hours tens digit
Hours units	r	01	00000001	UTC hours units digit
Minutes tens	r	02	00000010	UTC minutes tens digit
Minutes units	r	03	00000011	UTC minutes units digit
Seconds tens	r	04	00000100	UTC seconds tens digit
Seconds units	r	05	00000101	UTC seconds units digit
Day tens	r	06	00000110	UTC day of month tens digit
Day units	r	07	00000111	UTC day of month units digit
Month tens	r	08	00001000	UTC month tens digit
Month units	r	09	00001001	UTC month units digit
Year thousands	r	0A	00001010	UTC year thousands digit
Year hundreds	r	OB	00001011	UTC year hundreds digit
Year tens	r	OC	00001100	UTC year tens digit
Year units	r	0D	00001101	UTC year units digit
Latitude degrees tens	r	0E	00001110	Latitude degrees tens digit
Latitude degrees units	r	OF	00001111	Latitude degrees units digit

Register name	Туре	Register address Hex Binary		Description
Latitude minutes tens	r	10	00010000	Latitude minutes tens digit
Latitude minutes units	r	11	00010001	Latitude minutes units digit
Latitude minutes tenths	r	12	00010010	Latitude minutes tenths digit
Latitude minutes hundredths	r	13	00010011	Latitude minutes hundredths digit
Latitude minutes thousandths	r	14	00010100	Latitude minutes thousandths digit
Latitude minutes ten thousandths	r	15	00010101	Latitude minutes ten thousandths digit
Latitude character	r	16	00010110	Latitude direction character N = North, S = South
Longitude degrees hundreds	r	17	00010111	Longitude degrees hundreds digit
Longitude degrees tens	r	18	00011000	Longitude degrees tens digit
Longitude degrees units	r	19	00011001	Longitude degrees units digit
Longitude minutes tens	r	1A	00011010	Longitude minutes tens digit
Longitude minutes units	r	1B	00011011	Longitude minutes units digit
Longitude minutes tenths	r	1C	00011100	Longitude minutes tenths digit
Longitude minutes hundredths	r	1D	00011101	Longitude minutes hundredths digit
Longitude minutes thousandths	r	1E	00010110	Longitude minutes thousandths digit
Longitude minutes ten thousandths	r	1F	00010111	Longitude minutes ten thousandths digit
Longitude character	r	20	00100000	Longitude direction character W = West, E = East
GPS quality indicator	r	21	00100001	GPS quality value (0 = No GPS, 1 = GPS/GLONASS, 2 = DGPS)
Satellites in use tens	r	22	00100010	Satellites in use tens digit
Satellites in use units	r	23	00100011	Satellites in use units digit
HDOP tens	r	24	00100100	HDOP tens digit
HDOP units	r	25	00100101	HDOP units digit
HDOP tenths	r	26	00100110	HDOP tenths digit

Dogistor namo	Register address		ter address	Description	
Register name	Туре	Hex	Binary	Description	
Altitude metres ten thousands	r	27	00100111	Altitude metres ten thousands digit	
Altitude metres thousands	r	28	00101000	Altitude metres thousands digi	
Altitude metres hundreds	r	29	00101001	Altitude metres hundreds digit	
Altitude metres tens	r	2A	00101010	Altitude metres tens digit	
Altitude metres units	r	2B	00101011	Altitude metres units digit	
Heading true hundreds	r	2C	00101100	Heading true hundreds digit	
Heading true tens	r	2D	00101101	Heading true tens digit	
Heading true units	r	2E	00101110	Heading true units digit	
Heading true tenths	r	2F	00101111	Heading true tenths digit	
Not used	r	30	00110000	Not used returns zero	
Not used	r	31	00110001	Not used returns zero	
Not used	r	32	00110010	Not used returns zero	
Not used	r	33	00110011	Not used returns zero	
Speed km/h hundreds	r	34	00110100	Speed km/h hundreds digit	
Speed km/h tens	r	35	00110101	Speed km/h tens digit	
Speed km/h units	r	36	00110110	Speed km/h units digit	
Speed km/h tenths	r	37	00110111	Speed km/h tenths digit	
GPS mode	r	38	00111000	GPS mode (A = Autonomous Mode, D = Differential Mode, E = Estimated (dead reckoning) Mode, M = Manual Input Mode S = Simulated Mode, N = Data Not Valid)	
Accelerometer raw X MSB	r	39	00111001	Accelerometer raw X MSB valu	
Accelerometer raw X LSB	r	3A	00111010	Accelerometer raw X LSB value	
Accelerometer raw Y MSB	r	3B	00111011	Accelerometer raw Y MSB valu	
Accelerometer raw Y LSB	r	3C	00111100	Accelerometer raw Y LSB value	

Register name	Туре	Register address		Description	
Register Hume	JPC	Hex	Binary	Besonption	
Accelerometer raw Z MSB	r	3D	00111101	Accelerometer raw Z MSB value	
Accelerometer raw Z LSB	r	3E	00111110	Accelerometer raw Z LSB value	
Accelerometer pitch	r	3F	00111111	Accelerometer pitch (0-50 degrees, MSb (0x80) = sign bit)	
Accelerometer roll	r	40	01000000	Accelerometer roll (0-50 degrees, MSb (0x80) = sign bit)	
Not used	r	41	01000001	Not used returns zero	
Not used	r	42	01000010	Not used returns zero	
Not used	r	43	01000011	Not used returns zero	
Not used	r	44	01000100	Not used returns zero	
Not used	r	45	01000101	Not used returns zero	
Firmware and status	r	46	01000110	Firmware (Bit 0-3 = minor version, Bit 4-5 = major version, Bit 6 = Position found when set, Bit 7 = In motion when set (> 10km/h)	

3.7.4 I²C Register Restoration

All received data is formatted into decimal units (i.e. hundreds, tens & units) and stored in individual registers to facilitate either value or character restoration.

Value restoration can be undertaken by multiplying the required register by its multiplier e.g. to restore the value of register R0 'Hours tens' the register contents are multiplied by ten (10).

Character restoration, to allow the output to a PC via. RS232 or display of data on a LCD panel etc. can be undertaken by the addition of the constant value $48_{decimal}$, 30_{hex} .

3.7.5 UTC Time/Date Format

The standard GPS time coordinate system is called Universal Coordinated Time or UTC. This time format replaced Greenwich Mean Time (GMT) in 1986 and is of the same value. Time zones relative to GMT should add or subtract a standard value to gain the correct time.

3.7.6 I²C Read Example

To read the complete time from registers 0 to 5 (Current time = 14:32:56, Device address = default) write:

'Point to register 0

Byte 1 (GPM Adr) 1101000**0**_{binary} Byte 2 (Set register) 0_{decimal}, 00_{hex}

'Read register 0 - 5

Byte 1 (GPM Adr)

Byte 2 Hours tens

Byte 3 Hours units

Byte 4 Minutes tens

Byte 5 Minutes units

Byte 6 Seconds tens

Byte 7 Seconds units

1010001_{binary}

1_{decimal}, 01_{hex}

4_{decimal}, 03_{hex}

2_{decimal}, 02_{hex}

5_{decimal}, 05_{hex}

6_{decimal}, 06_{hex}

3.8 Backup Battery

3.8.1 Battery Replacement

The GPM backup battery needs replacing if no time/date data can be read or time to first fix is significantly long.

The CR1220 type lithium battery can be replaced by sliding out the old battery and sliding in a new battery [positive uppermost].

Please dispose of the exhausted battery responsibly.

3.9 Application Software

3.9.1 Demonstration Software

Raspberry-Pi demonstration software written in Python is available to download from the website www.designersystems.co.uk/robotics

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital pins of the module are listed in the following table.

Table 9: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
Power Supply Voltage (V+)	-0.3	6.0	V
Backup Battery Voltage (Lithium cell)	-0.3	4.5	V
Input Voltage on SDA and SCL	-0.3	3.6	V
Storage temperature	-45	100	°C

4.2 Operating Conditions

Normal operational conditions are listed in the following table.

Table 10: Normal Operating Conditions

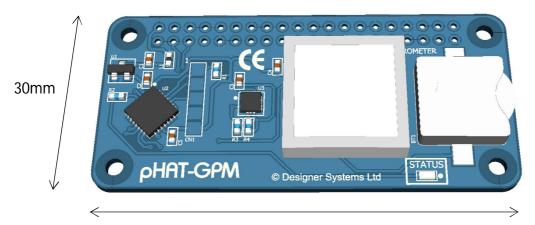
Parameter	Min.	Тур.	Max.	Unit
Power Supply Voltage (V+)	4.5	5.0	5.5	V
Backup Battery Voltage (Lithium cell)	1.5	3.0	4.3	V
Input voltage on SDA and SCL		3.3		V
Peak Supply Current			40	mA
Operating Temperature	-20	25	85	оС

4.3 Current Consumption

Normal values for current consumption are listed in the following table.

Table 11: Current Consumption

Parameter	Min.	Тур.	Max.	Unit
Supply Current – Acquisition (GPS)		26		mA
Supply Current – Tracking (GPS)		22		mA
Supply Current – Acquisition (GPS + GLONASS)		30		mA
Supply Current – Tracking (GPS + GLONASS)		26		mA
Backup Battery		7		uA

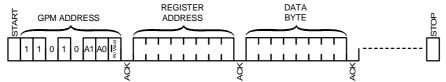


5 Mechanical

5.1 Dimensions

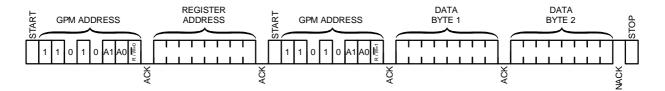
Mechanical drawing – all dimensions in millimetres.

Figure 1: Dimensions


65mm

6 References

6.1 I²C protocols


Figure 2: I²C Write protocol

Multiple bytes may be written before the 'STOP' condition. Data is written into registers starting at 'REGISTER ADDRESS', then 'REGISTER ADDRESS' +1, then 'REGISTER ADDRESS' +2 etc.

Each byte transfer is acknowledged 'ACK' by the GPM until the 'STOP' condition.

Figure 3: I²C Read protocol

'DATA BYTE 1 & 2' are register values returned from the GPM. Each byte written is acknowledged 'ACK' by the GPM, every byte read is acknowledged 'ACK' by the I2C Master. A Not-acknowledge 'NACK' condition is generated by the I2C Master when it has finished reading.

7 Appendix

Table 12: Related Documents

Document Name	Remark
Quectel_L86_Hardware_Design_V1.2.pdf	More information about the L86 GNSS module used in this product

Table 13: Terms and Abbreviations

Abbreviation	Description
GPS	Global Positioning System
GLONASS	Global Navigation Satellite System
CEP	Circular Error Probable
HDOP	Horizontal Dilution Of Precision
ESD	Electrostatic Discharge
I ² C	Inter-Integrated Circuit
GNSS	Global Navigation Satellite System

8 Compliance

WEEE Consumer Notice

This product is subject to Directive 2012/19/EC of the European Parliament and the Council of the European Union on Waste of Electrical and Electronic Equipment (WEEE) and, in jurisdictions adopting that Directive, is marked as being

put on the market after August 13, 2005, and should not be disposed of as unsorted municipal/public waste. Please utilise your local WEEE collection facilities in the disposition and otherwise observe all applicable requirements. For further information on the requirements regarding the disposition of this product in other languages please visit www.designersystems.co.uk

RoHS Compliance

This product complies with Directive 2011/65/EC (RoHS 2) and 2015/863/WU (RoHS 3) of the European Parliament and the Council of the European Union on the Restriction of Hazardous Substances (RoHS) which prohibits the use of various heavy metals (lead, mercury, cadmium, and hexavalent chromium), polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), Bis(2-Ethylhexyl) phthalate (DEHP), Benzyl butyl phthalate (BBP), Dibutyl phthalate (DBP) and Diisobutyl phthalate (DIBP).

REACH Compliance

This product complies with Regulation 1907/2006 convering the Registration, Evaluation, Authorisation and restriction of Chemicals (REACH). Designer Systems Ltd confirms that none of its products or packaging contain any of the 174 Substances of Very High Concern (SVHC) on the REACH Candidate List in a concentration above the 0.1% by weight allowable limit.

Battery Recycling

This product features an internal lithium coin cell that must be recycled at end of life. To remove slide the coin cell from its holder and to preserve natural resources please recycle the battery properly.